Comparative Aspects of Molecular Mechanisms of Drug Resistance through ABC Transporters and Other Related Molecules in Canine Lymphoma
نویسندگان
چکیده
The most important causes of treatment failure in canine lymphoma include intrinsic or acquired drug resistance. Thus, elucidation of molecular mechanisms of drug resistance is essential for the establishment of better treatment alternatives for lymphoma patients. The overexpression of drug transporters is one of the most intensively studied mechanisms of drug resistance in many tumors. In canine lymphoma, it has also been shown that the overexpression of drug efflux pumps such as P-glycoprotein is associated with drug-resistant phenotypes. Canine lymphoma has many pathological similarities to human non-Hodgkin's lymphoma, and they also share similar molecular mechanisms of drug resistance. We have previously demonstrated the association of the overexpression of drug transporters with drug resistance and indicated some molecular mechanisms of the regulation of these transporters' expressions in canine and human lymphoid tumor cells. However, it has also been indicated that other known or novel drug resistance factors should be explored to overcome drug resistance in lymphoma. In this review, we summarize the recent findings on the molecular mechanisms of drug resistance and possible strategies to develop better treatment modalities for canine lymphoma from the comparative aspects with human lymphoid tumors.
منابع مشابه
Mechanisms of Drug Resistance in Veterinary Oncology—A Review with an Emphasis on Canine Lymphoma
Drug resistance (DR) is the major limiting factor in the successful treatment of systemic neoplasia with cytotoxic chemotherapy. DR can be either intrinsic or acquired, and although the development and clinical implications are different, the underlying mechanisms are likely to be similar. Most causes for DR are pharmacodynamic in nature, result from adaptations within the tumor cell and includ...
متن کاملMulti-drug resistance in a canine lymphoid cell line due to increased P-glycoprotein expression, a potential model for drug-resistant canine lymphoma.
Canine lymphoma is routinely treated with a doxorubicin-based multidrug chemotherapy protocol, and although treatment is initially successful, tumor recurrence is common and associated with therapy resistance. Active efflux of chemotherapeutic agents by transporter proteins of the ATP-Binding Cassette superfamily forms an effective cellular defense mechanism and a high expression of these trans...
متن کاملThe Regulation of the Expression of ABCG2 Gene through Mitogen-Activated Protein Kinase Pathways in Canine Lymphoid Tumor Cell Lines
Treatments for canine lymphoma often fail, because tumor cells acquire multidrug resistance (MDR). MDR can develop through several mechanisms, among which the overexpression of drug transporters in tumor cells is a well-studied mechanism. ATP-binding cassette sub-family G member 2 (ABCG2) belongs to the ABC-transporters, that are representative drug efflux pumps associated with MDR in human tum...
متن کاملEffects of Salinispora derived metabolites against multidrug resistance, an in-silico study
Background: Multidrug resistance (MDR) is known to defeat most chemotherapies as one of the main anticancer strategies. The role of overexpression/overactivation of ABC transporters, especially P-glycoprotein (P-gp), in the development of chemotherapy has long been demonstrated. Salinispora is a marine actinomycete genus known for the production of novel bioactive metabolites. Methods: In this...
متن کاملمکانیسم مقاومت دارویی در سرطان
Some varieties of human cancers become resistant, or, are intrinsically resistant to treatment with conventional drug therapies. This phenomenon is due largely to over-expression of the ATP binding cassette, (ABC), super-family of membrane transporters. In this regard, 170 kDa plasma membrane ATP-dependent pump, known as P-glycoprotein are the most important. Other members of multi-drug resista...
متن کامل